Search results for "Sucrose transport"
showing 4 items of 4 documents
The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrh…
2012
We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The iden- tification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members…
Medicago truncatula
2012
In plants, long distance transport of sugars from photosynthetic source leaves to sink organs comprises different crucial steps depending on the species and organ types. Sucrose, the main carbohydrate for long distance transport is synthesized in the mesophyll and then loaded into the phloem. After long distance transport through the phloem vessels, sucrose is finally unloaded towards sink organs. Alternatively, sugar can also be transferred to non‐plant sinks and plant colonization by heterotrophic organisms increases the sink strength and creates an additional sugar demand for the host plant. These sugar fluxes are coordinated by transport systems. Main sugar transporters in plants compri…
Genome-Wide Profiling and Phylogenetic Analysis of the SWEET Sugar Transporter Gene Family in Walnut and Their Lack of Responsiveness to Xanthomonas …
2020
Following photosynthesis, sucrose is translocated to sink organs, where it provides the primary source of carbon and energy to sustain plant growth and development. Sugar transporters from the SWEET (sugar will eventually be exported transporter) family are rate-limiting factors that mediate sucrose transport across concentration gradients, sustain yields, and participate in reproductive development, plant senescence, stress responses, as well as support plant&ndash
Hormone directed sucrose transport during fruit set induced by gibberellins in Pisum sativum
1987
A new system has been developed to study hormone-directed transport in intact plants during parthenocarpic fruit set induced by gibberellins. Gibberellic acid (GA3) and gibberellin A1 (GA1) applied to unpollinated ovaries of pea (Pisum sativum L. cv. Alaska) promoted sucrose transport from the leaf to the site of hormone application. In vivo experiments showed an early (30 min) accumulation of [14C]-sucrose in ovaries of pea stimulated by gibberellins. This activation of sucrose transport appears to be mediated by gibberellins (GA1, GA3), increasing both loading of phloem with sucrose in the leaf (source) and sucrose unloading in the ovary (sink). The ability of pea tissue segments to take …